Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound.
نویسندگان
چکیده
PURPOSE Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. METHODS First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound (IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. RESULTS The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. CONCLUSIONS Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
منابع مشابه
Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound
The relationships among vascular geometry, hemodynamics, and plaque development in the coronary arteries are complex and not yet well understood. This paper reports a methodology for the quantitative analysis of in vivo coronary morphology and hemodynamics, with particular emphasis placed on the critical issues of image segmentation and the automated classification of disease severity. We were ...
متن کاملAnalysis of the Interdependencies Among Plaque Development, Vessel Curvature, and Wall Shear Stress in Coronary Arteries
The relationships among vascular geometry, hemodynamics, and plaque development in coronary arteries are not yet well understood. This in-vivo study was based on the observation that plaque frequently develops at the inner curvature of a vessel, presumably due to a relatively lower wall shear stress. We have shown that circumferential plaque distribution depends on the vessel curvature in the m...
متن کاملAssociation of endothelial shear stress with plaque thickness in a real three-dimensional left main coronary artery bifurcation model.
We report for the first time a real three-dimensional reconstruction of the left main coronary artery, left main bifurcation, left anterior descending coronary artery and left circumflex coronary artery using biplane angiography and intravascular ultrasound imaging in a patient with a proximal stenosis in the left anterior descending coronary artery. By using computational fluid dynamics in the...
متن کاملStrain distribution over plaques in human coronary arteries relates to shear stress.
Once plaques intrude into the lumen, the shear stress they are exposed to alters with hitherto unknown consequences for plaque composition. We investigated the relationship between shear stress and strain, a marker for plaque composition, in human coronary arteries. We imaged 31 plaques in coronary arteries with angiography and intravascular ultrasound. Computational fluid dynamics was used to ...
متن کاملHuman coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study
BACKGROUND Atherosclerotic plaque progression and rupture are believed to be associated with mechanical stress conditions. In this paper, patient-specific in vivo intravascular ultrasound (IVUS) coronary plaque image data were used to construct computational models with fluid-structure interaction (FSI) and cyclic bending to investigate correlations between plaque wall thickness and both flow s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 39 12 شماره
صفحات -
تاریخ انتشار 2012